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Abstract
In this study, we analyze some critical points of the application of the box-counting method to
the evaluation of the fractal dimensions of the natural and built landscapes. A brief theoretical
discussion of the eventual drawbacks of the method is supported by experimental results of two
box-counting programs applied to classical fractals. The optimized version of the algorithm,
based on the results of computations for the classical fractal images, is proposed and employed
for the evaluation of the complexity level of the chosen historical buildings and surrounding
environment in the well-known case of Amasya city. The hypothesis of the relationship between
the visual complexity of built and natural settings is analyzed for the Amasya case and for two
historical Brazilian cities.

Keywords : Computational Fractal Analysis; Fractal Dimension; Box-Counting Method; Natural
Landscapes; Historic Buildings.
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1. INTRODUCTION

The first studies on the fractal geometry of natural
environments have appeared in the 80s, and one of
the ramifications of these works, important for our
research, is the analysis of the visual complexity of
natural landscapes.1–4 In general terms, it consists
of the extraction of silhouettes from the landscape
images and the evaluation of the fractal dimension
of the resulted simplified forms. A general conclu-
sion reached was that different landscape types are
characterized by different fractal dimensions.1,4,5

The fractal analysis of the built environment
started in the 90s, first involving the evaluations
of the complexity of urban planes at the entire city
and street scale.6–10 At a smaller scale of buildings
and group of buildings, the scale relevant for our
study, the first results were presented by Bechhoe-
fer and Bovill11 and by Bovill,12 where, in particu-
lar, the box-counting method for calculation of the
fractal dimension was applied to characterize the
visual complexity of the considered historical build-
ings. Since then, a similar technique was applied
to the analysis of other historical buildings and
settings.13–16

One of the important points of fractal studies on
the urban environment is the investigation of the
relation between the visual complexity of the urban
scenes and surrounding natural scenes. First, the
hypothesis of such a relationship was put forward
in the works of Bovill and collaborators,11,12 and
it also was partially tested there. The hypothesis
attracted scholars and was tested in different cases,
but the results obtained are inconclusive and con-
troversial.12,16–18 The focus of our study is to review
one of the known test cases and verify the validity
of the hypothesis in the case of two Brazilian cities.

It appears that all the approaches used so far
can be divided into two groups: empirical studies,
and factual analysis. In general terms, the former
suggests for a chosen group of participants a list of
artificially created scenes of the urban and natu-
ral landscapes, and asks to choose the scenes that
match each other better and worse. The results
of the answers are measured on a chosen scale
for the studied characteristic (it can be roughness,
complexity, similarity, etc.), so in this way all the
results are transformed into numerical form and
are subsequently subjected to statistical evaluation.
If the pool of respondents is sufficiently large and
the standard deviation is sufficiently small, then in
some statistics one can derive conclusions on the

validity and stability of the obtained results. Such
approach was used in many studies.1,18–20 In partic-
ular, in the work by Stamps18 the hypothesis that
the fractal dimension of the skyline matches the
fractal dimension of the surrounding landscape was
tested, and in the research of Hagrehall et al.1 the
human preference for natural landscapes with cer-
tain levels of fractal complexity was investigated.

Among the problematic points of the empirical
method, one can mention the subjectivity and arti-
ficiality in the creation of the proposed scenes, the
subjectivity in the choice of the numerical scale
for measuring qualitative responses, the necessity of
having a large and representative pool of the respon-
dents, and the absence of a mathematical theory on
the validity of the results, because the obtained dis-
tributions are usually not normal.

The second approach consists of the comparison
of the geometric complexity of the actual urban
and natural settings. Usually, the box-counting
method is applied to available graphic material
(photographs, images, maps, etc.) to evaluate the
fractal dimension of the characteristics chosen for
comparison.11,12,15–17 A number of studies were con-
cerned with the texture analysis of the images,
including those representing the natural scenes.21–25

In particular, in the last three articles, fractal anal-
ysis was applied to the binary images and the
validity of this method for the classification of the
image complexity was shown. A similar approach
was employed in the study of urban settings by
Bovill,12 Lorenz,17 Cooper and Oskrochi,8 Cooper
et al.9 The details of this approach, as applied in our
research, are specified below in Secs. 2–4, where the
box-counting algorithm is used to calculate the frac-
tal dimensions of the chosen historical buildings and
the corresponding natural environments. Although
some subjective elements are also pertinent to this
approach (as it will be seen in details in Secs. 2
and 3), it has very attractive points including the
strong mathematical basis in the case of theoretical
fractals and the possibility to analyze the images of
complex objects, such as real landscapes and con-
structions. The latter property is important to min-
imize the presence of artificial elements and make
possible a more objective evaluation of the prefer-
ences of large groups of inhabitants.

The text is structured as follows. In Sec. 2, basic
definitions of the fractal theory are recalled and
some properties of the box-counting method are
discussed. Section 3 is concerned with testing of
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the chosen software and discovering the properties
important for image treatment. The program per-
formance and essential properties are verified using
the images of classical fractals, whose exact frac-
tal dimension is known, and then the improved
algorithm is applied to the known case of Amasya
city to compare with the results of the previous
studies.12,16,17 The analysis and main results of the
comparison between the visual complexity of the
natural and built sites for the cases of two histori-
cal Brazilian cities, Ouro Preto and Pelotas, are pre-
sented in Sec. 4, followed by the concluding remarks
in the final section.

2. BOX-COUNTING METHOD:
THEORETICAL
CONSIDERATIONS

The well-known Mandelbrot definition of a fractal,
made in his fundamental essay, states that “a frac-
tal is ... a set for which the Hausdorff–Besicovitch
dimension strictly exceeds the topological dimen-
sion”.26 However later Mandelbrot regretted that
“the definition is very general, which is desirable
in mathematics. But in science its generality was
to prove excessive: no only awkward, but genuinely
inappropriate”.27 Besides, the Hausdorff dimension
itself is a complex mathematical concept. So, like
many other authors,1,6,12,15,28 we appeal to a non-
exact general description of a fractal as a geomet-
rical structure with the following properties: it is
irregular at any scale; it cannot be described with
the required precision using traditional geometry;
its non-traditional (fractal) dimension, defined in a
proper way, is usually greater than its topological
dimension.

The box-counting fractal dimension is one of the
most popular measures of the geometric complexity
in applied sciences due to its simple mathemati-
cal formulation and straightforward approximation
through numerical algorithms for practically arbi-
trary forms. To avoid unnecessary generality and
simplify considerations, let us consider the specific
situation relevant for our study: a bounded fig-
ure located on a two-dimensional plane. Let Nr

be the smallest number of squares with the side
length r, which cover our figure; then the box-
counting dimension is the following limit (if it
exists): D = −lim

r→0
log Nr/log r. It is well-known

that for some classes of fractals (such as self-
similar fractals without or with sufficiently small

overlapping), the box-counting dimension coincides
with the Hausdorff dimension (for exact formula-
tions see Falconer29).

In practice, one uses an approximate form of the
definition, evaluating Nr for different fixed values
of r and extrapolating the obtained results to the
limit as r approaches 0. The most popular version
of numerical approximation is as follows. First, the
figure is covered by a rectangular mesh with square
cells (boxes) having a length r, and the number
Nr of the boxes, which contain at least one point
of the figure, is counted. The same count is per-
formed on a finer grid with a reduced linear size
of boxes. For a simplicity of algorithm, frequently
the reduction factor is chosen to be 2 (the power
of 2 algorithm). This procedure of mesh refining
and box counting is repeated until the finest pos-
sible mesh is reached. Then, the obtained values
of the function Nr of the variable r are used to
evaluate the fractal dimension of the figure. Fre-
quently the least squares linear fitting for the curve
Nr(r) is applied and the slope of the found straight
line is the approximation to the fractal dimension.
Another option is to find the local slopes, defined
as (log Nr2 − log Nr1)/(log r2 − log r1) for two con-
secutive box lengths r1 and r2 (for the power of
2 algorithm it means log2(Nr2/Nr1)), and consider
the mean value of these slopes as the approximated
fractal dimension.

Although very popular and simple in implemen-
tation, this algorithm has some drawbacks, which
may affect the reliability of the results. Some issues
are general for treatment of any image of a real
structure. First of all, any real image has a finite res-
olution, therefore, according to exact definition, it
can not be considered a fractal, but just its approx-
imation. Actually, the same is true for any real
(including natural and built) object, so even if the
images and computers would have an infinite resolu-
tion, in reality the non-artificial objects have finite
range of subdivisions and scales (at least we should
stop reaching the atom scale) and do not satisfy the
exact definition of a fractal. Another general prob-
lem is a multifractality: the majority of the natural
and built forms have different levels of complexity
at different space scales, and in this case it is diffi-
cult (or even impossible) to define a unique measure
of complexity for the entire structure.

Various issues can arise due to imperfections
and even deficiencies of images, which frequently
are photographs of real objects and include
imperfections of digital camera, shooting conditions
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and digital formats used for image storage. Some
specific features can affect the results of computa-
tions. For example, the width of the lines can be
non-uniform over the image and some lines can be
larger than the smallest boxes. Also, the presence of
some secondary objects, for example, cables, trees,
high grass, etc., can contaminate the evaluation of
the principal structures.

Finally, the power of 2 algorithm has additional
issues. First, the original figure (or image) is not
usually of a square or rectangular form, and, almost
for sure, its size is not a power of 2, or a multi-
ple of such a power. This requires some adjustment
between the figure size and coverings on the bound-
aries of the figure, which can compromise the box
counts especially at the large sizes. Second, since the
powers of 2 decrease rapidly, one soon gets down to
the precision of data, when the process should stop.
So it may happen that only a few measurements will
be obtained, insufficient to give a reliable result.

All these considerations lead to the following con-
clusions: a single fractal dimension of real objects
generally does not exist; the primary interest is
shifted to the local slopes (local fractal dimensions)
connected with rugged forms at the chosen range
of scales; the counts for the smallest and largest
boxes are usually non-informative; different prob-
lems can be reflected in significant variations of
approximations to the fractal dimension over differ-
ent space scales. Thus, it is frequently much more
important to analyze a sequence of the measure-
ments related to different space windows, instead of
obtaining a single number, which should represent
an approximation to the supposed fractal dimension
that probably does not even exist. Moreover, the
main attention may be focused on the measures of

local complexity, using, for example, the local slopes
defined above. The behavior of the local slopes with
respect to space scales can show the multifractal
nature of a geometric form and the pattern of frac-
tal measures, which can characterize a specific class
of the structures. This can provide important infor-
mation on both the variability and reliability of the
results.

3. BOX-COUNTING PROGRAM:
TESTS AND RELEVANT
PROPERTIES

In this section, we present the results of Boxcount
program by Moisy30 and Fractalyse program by
Frankhauser and Tannier31 applied to the three
classical fractals and to the known case of the eval-
uation of the visual complexity of the natural and
built settings, which were studied independently by
three groups of researchers. The results of both pro-
grams are practically the same, which is one of the
forms of validation of the results.

3.1. Classical Fractals

First we test the program in the case of the three
classical fractals with known theoretical fractal
dimensions. We chose the fractals with different
dimensions: the Koch snowflake of a lower com-
plexity (D = log 4/log 3≈ 1.262), Sierpinski triangle
of a medium complexity (D = log 3/log 2≈ 1.585)
and Sierpinski carpet of a higher complexity (D =
log 8/log 3 ≈ 1.893). The images of these fractals
are shown in Fig. 1.

In order to simulate the subsequent treatment of
the images obtained with digital camera or prepared
digitally using software, each of the fractals was

(a) The Koch snowflake. (b) The Sierpinski triangle. (c) The Sierpinski carpet.

Fig. 1 Three classical fractals.
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Table 1 The Local Slopes of the Sierpinski Triangle.

Bs 1 2 3 4 5 6 7 8 9 10 11 12 13
Nr 301971 87287 26232 8356 2739 908 306 97 36 14 5 2 1
d 1.79 1.73 1.65 1.61 1.59 1.57 1.66 1.43 1.36 1.49 1.32 1.00

Note: Bs – box size measured in pixels (the power of 2), Nr – the number of boxes, d – the local slopes.

generated by the Matlab program and then saved
in jpeg format file of a medium resolution (300 dpi,
2400 × 1800 pixels). Due to computer limitations,
the first two fractals were calculated with nine iter-
ations of scale refinement, and the last one with six
iterations. Then the images in the jpeg files were
processed by the Matlab program, which transforms
the color format to grayscale image, binarizes it, and
counts the number of the square boxes covering the
obtained silhouette (black/white simplification) of
the original image. Of course, for the classical frac-
tals the stages of forming a color-type image and
then transferring it to the binarized form can be
dropped. However, one of our goals at this stage
of tests was to mimic the subsequent application
of the program to the real color images, including
some imperfections and distortions, which are par-
tially imitated in the above process of creating jpeg-
formatted files of the classical fractals with medium
resolution.

The result of computations is the sequence of
the box counts, corresponding to different coverings
with the box length (measured in pixels) equal to a
power of 2, and also the final approximation to the
fractal dimension together with the standard devia-
tion. Instead of the box numbers it is convenient to
use the sequence of local slopes (defined in Sec. 2).
For the Sierpinski triangle, such sequence is shown
in Table 1 (hereinafter the results are ordered in the
sequence of increasing box size).

It is evident that the covering values of the small-
est and largest boxes have a weak (if any) relation
to the theoretical fractal dimension. Indeed, if all
the twelve numbers in Table 1 are used to calculate
the mean value of the slope, then the result is not
so bad (1.52), but it happens only due to acciden-
tal compensation of large and small wrong values in
this specific case. The standard deviation from this
mean value is 0.23, that is, roughly speaking, the
probable approximations to the theoretical result
have a great chance to be found in the entire inter-
val [1.29, 1.75], which is very low level of precision.
However, if we eliminate some problematic counts
at the both ends of the space spectrum, then the

results can be significantly improved. For example,
using the box sizes from 4 to 8, we obtain much
better result of 1.57 for the computational fractal
dimension, and more importantly, the confidence
level of this result is quite acceptable because the
standard deviation in this case is 0.09. Even if we
choose to drop only the two smallest sizes and the
three largest sizes, we obtain the evaluation 1.58 for
the fractal dimension and the standard deviation is
still reasonable −0.12.

It is worth to note that the shown results are
in line with those available in other sources (e.g.,
Buczkowski et al.,32 Nonnenmacher et al.33 and
Wong et al.34). The main difference is that we high-
light the behavior of the local slopes, which are more
sensitive to space variations. Since the results in the
above papers are presented in a more usual form of
the evaluation through the curve fitting, we provide
also the graph of the obtained box counts in the
logarithmic scale (log Nr versus − log r), along with
the straight line of the least squares curve fitting in
Fig. 2.

It is seen that the relationship between two
curves is strong, which is also confirmed by the cor-
relation coefficient of 0.9986 and relatively small

Fig. 2 The box counts graph and the fitting curve for the
Sierpinski triangle.
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standard deviation of 0.031. The slope of the
straight line (1.53) is also a reasonable approxima-
tion to the theoretical fractal dimension (1.585).
All these results resemble the corresponding eval-
uations in the above three papers. At the same
time, the graph in Fig. 2 shows again that the
maximum deviations between two curves occur at
the endpoints of the spatial spectrum (albeit it
is not highlighted at the same degree as for the
measure by the local slopes). Therefore, just like
in the case of the local slopes, we can obtain
much better results by eliminating the extremal
box sizes. For example, filtering out the two small-
est and three largest sizes, we obtain the corre-
sponding straight line slope of 1.60, the correlation
coefficient of 0.9996 and the standard deviation of
0.0019.

The results for the Koch snowflake and Sierpin-
ski carpet are quite similar and, for this reason, we
provide here just a brief summary of them in order
to show that the program keeps good performance
for fractals with different levels of complexity. The
main results for all the three classical fractals are
assembled in Table 2 with averaging over all spa-
tial scales shown in the first row, over the box sizes
from 2 to 9 in the second row and from 4 to 8 in
the third row (the corresponding values of the spa-
tial scales s are shown in the first column). A lower
level of approximation for the Sierpinski carpet can
be attributed to the smaller number of iterations
used to generate this fractal.

Table 2 Fractal Dimensions of the Three Fractals.

Spatial Snowflake Triangle Carpet
Range s

D sd D sd D sd

1–12 1.31 0.47 1.51 0.22 1.67 0.54
2–9 1.32 0.13 1.58 0.12 1.78 0.12
4–8 1.28 0.09 1.57 0.09 1.79 0.11
Theoretical 1.262 1.585 1.893

Note: D – fractal dimension (approximate and theoretical),
sd – standard deviation.

It can be noted that the observed properties of
the box-counting computation of the fractal dimen-
sion agree closely with the theoretical considera-
tions presented in the previous section. Even for the
figures, which represent the approximations to the
well-defined single-fractal geometric forms, the level
of approximation of the theoretical fractal dimen-
sion depends strongly on the box sizes used in the
calculation of the mean value. Therefore, in order
to optimize the evaluation of the fractal dimension,
some filtration of the box counting results should
be applied. Apparently, the use of both extremely
small and large boxes just contaminates the results
in the middle part of the space spectrum, which
are very satisfactory. So it is reasonable to sug-
gest that the one or two smallest sizes and two to
three largest sizes should be eliminated from the
final evaluation of the fractal dimension. In the fol-
lowing section it is shown that the tests involving
images of natural and built settings confirm this
proposition.

3.2. The Case of Amasya City

Bovill12 tested the hypothesis on the relationship
between the visual complexity of built and natural
settings in the case of a specific historical area of
the city of Amasya, Turkey, founded over 2000 years
ago. In particular, he presented three images in this
area — the Amasya hill, house elevation and urban
plan (see Fig. 3) — and calculated their fractal
dimensions using the box-counting method in order
to substantiate his proposition.12 Later the results
obtained were reviewed independently by Lorenz,17

and Vaughan and Ostwald.16

The results of calculations of the fractal dimen-
sion of three images are presented in Table 3: the
first three columns reproduce the results obtained
by Bovill,12 Lorenz,17 and Vaughan and Ost-
wald,16 respectively, while the fourth column con-
tains the results obtained by applying the algorithm
described in Sec. 3.1 with filtration of the two small-
est and three largest box sizes.

(a) Hill. (b) Elevation. (c) Urban plan.

Fig. 3 The Amasya images.
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Table 3 Fractal Dimension of the Amasya Images According to Different Sources.

Element\Source Bovill Lorenz Vaughan/ Algorithm Algorithm
Ostwald with Filtering without Filtering

(Scales s = 3−8) (Scales s = 1−11)

D D D D sd D sd

Dhil 1.57 1.36 1.50 1.69 0.14 1.45 0.38
Delevation 1.72 1.55 1.51 1.77 0.14 1.58 0.44
Durban plan 1.43 1.49 1.59 1.64 0.05 1.43 0.36

Note: D – fractal dimension, sd – standard deviation, s – the range of spatial scales used in the algorithm.

It is seen that for each of three evaluated ele-
ments, the results of the computations in four
independent studies are different. It was suggested
by Vaughan and Ostwald16 that the distinctions
among three first reports are due to inconsistency of
computational implementations of the box-counting
method: Bovill12 made his calculations manually,
Lorenz17 used an early version of the software
Benoit, while Vaughan with Ostwald16 applied a
refined version of the Benoit and also the Archim-
age software and presented the result averaged over
the two programs. Indeed, this may be one of the
sources of discrepancy in the results, as well as the
differences in quality and computer form of the pho-
tographs used by the authors. However, we would
like to draw attention to another feature that may
be the main cause of the differences among the
results. This feature is the presence of significant
deviations in the distribution of the box counts
with respect to the box size (shown in the paren-
thesis in the fourth column of Table 3) even for
algorithm with filtration of the extremal sizes (spa-
tial scales s = 3−8). In the fifth column we also
present the results averaged over entire range of the
used box sizes (without filtering the smallest and
largest scales). It is seen, that when the most prob-
lematic coverings, corresponding to a few smallest
and greatest scales, are eliminated, the level of devi-
ations reduces significantly, and consequently the
results in the fourth column are much more reli-
able than those in the fifth column. Hence, the
range of box coverings involved and the method
of processing these counts can influence strongly
on the final result. This is the case of the consid-
ered Amasya images, as it is exemplified in the last
two columns of Table 3. Besides, the characteri-
zation of the complexity of the natural and built
landscapes through a single number may have a
weak connection with actual complexity of objects
due to multifractality, which requires a sequence

of evaluations at the different space scales. In such
cases it is helpful to use local measures like the local
slopes.

Both Bovill12 and Lorenz17 take care of the local
slopes and provide analysis of the differences in
these slopes, including explanations in terms of
the building details and structures. On the contrary,
the analysis in the third work16 is based only on the
results of final approximations to the fractal dimen-
sions, with no discussion about variability and reli-
ability of the obtained results. In the course of their
analysis of the Amasya case, Vaughan and Ost-
wald16 arrive to the conclusion that the gap of 0.09
(defined as the difference between the highest and
lowest fractal dimensions, i.e., the gap = 1.59−1.50)
“suggests a significant difference in visual charac-
ter”. As one can see from Table 3, this statement
is not applicable in the Amasya case because the
standard deviations shown in the fifth column are
so high (about four to five times greater than 0.09)
that, based only on these numbers, one cannot draw
a conclusion about the real value of the fractal
dimensions with any reasonable precision. Even for
the filtered results shown in the fourth column, such
a conclusion is still impossible.

As for the Bovill hypothesis, it is hard to draw
a conclusion with the base on the tests made for
the city of Amasya, even in the case of the filtered
results. There are too many indeterminations in all
stages of evaluation, starting with imperfections of
images and question of reliability of the hill image,
and ending with relatively large deviations for the
two fractal dimensions (the hill and elevations).

4. BOX-COUNTING METHOD
APPLIED TO TWO
BRAZILIAN CITIES

In this section, we apply the filtered algorithms of
box-counting method for evaluation of the fractal
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complexity of two historical Brazilian cities — Ouro
Preto and Pelotas. The city of Ouro Preto was
founded at the end of the 17th century in the
valley among the mountains of the state Minas
Gerais, Brazil (it is located at the elevation of about
1.2 km). It is included in the UNESCO list of the
World Heritage Sites due to its rich baroque archi-
tecture. Pelotas was founded at the beginning of
the 19th century on a plain of a low elevation near
the ocean in the state Rio Grande do Sul, Brazil.
Its historical architecture is considered the national
heritage due to important sites of the colonial and
eclectic styles.

The two cities, Ouro Preto and Pelotas (OP and
PE in notations in the following figures), were cho-
sen for analysis of the visual complexity due to their
quite different natural environments, which might

influence the complexity of the city sites, and in this
way might confirm (or not) the Bovill hypothesis. In
what concern the built environment we restrict our-
selves to street and building level scenes, because at
this level the original historical constructions have
suffered a smaller influence of the posterior central
planning development of cities.

First we present in Figs. 4 and 5 two typical
images of natural surroundings for each of the cities
(all the presented images are already transformed to
gray scale form as it was done in the program).

Each image in Figs. 4 and 5 was transformed to
its binary form, according to the intensity values
at each pixel, in order to extract the silhouettes
of the presented objects. Examples of the black-
white images representing textural complexity are
presented in Fig. 6: the first image corresponds to

(a) Ouro Preto surroundings 1 (OPN1). (b) Ouro Preto surroundings 2 (OPN2).

Fig. 4 The Ouro Preto surrounding environment.

(a) Pelotas surroundings 1 (PEN1). (b) Pelotas surroundings 2 (PEN2).

Fig. 5 The Pelotas surrounding environment.
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(a) Binary image of OPN1. (b) Binary image of PEN1.

Fig. 6 Black/white representations of the surrounding environment.

the Ouro Preto environment photo, and the second
to the Pelotas environment.

Then the box-counting program was applied to
compute the distribution of the local slopes along
the space scales. The local slopes of the four images
computed within the chosen space window (the
scales remaining after filtering out the smallest
and largest boxes) are shown in Fig. 7. Addi-
tionally, the approximated values of the fractal
dimensions/standard deviations are: 1.92/0.07 for
OPN1, 1.95/0.07 for OPN2, 1.73/0.09 for PEN1,
and 1.82/0.08 for PEN2.

We do not focus here on specific values of the
local slopes or on their mean value (albeit it is seen
that the natural surroundings of Ouro Preto have
higher values of the fractal dimension), but instead

Fig. 7 The local slopes of the natural landscapes.

we draw attention to another characteristic — dis-
tribution of the slopes along the scale (box size)
axis. It is a noticeable feature of the Ouro Preto
distributions that the slopes keep almost the same
value over all the range of scales and decrease only
for very large box sizes. Differently, the Pelotas dis-
tributions have notably smaller values at the small-
est scales and reach the maximum at the larger
scales.

It is interesting to verify if the same features are
pertinent to the corresponding architectural sites.
In Figs. 8 and 9 we present the characteristic street
scenes in the historical parts of the cities (two for
each city) and the two corresponding samples of
binary images are shown in Fig. 10.

The same box-counting algorithm provides the
results of the fractal analysis shown in Fig. 11. The
corresponding approximated values of the fractal
dimensions/standard deviations are: 1.87/0.02 for
OPB1, 1.86/0.02 for OPB2, 1.70/0.08 for PEB1,
and 1.72/0.07 for PEB2.

Thus, both fractal dimensions for Pelotas are
smaller than those of Ouro Preto, but it is much
more important to compare the scale dynamics
of the local slopes presented in the graphs. First,
in Fig. 9, both fractal curves for Pelotas evalua-
tions lies below the curves for Ouro Preto, indi-
cating a less degree of complexity in the Pelotas
scenes, which agrees with the relation between the
visual complexities of the corresponding natural
landscapes. Further, there exists a strong similarity
between the curves of slopes for historical buildings
and natural surroundings in each of the locations.
At the same time, the spatial distributions of the
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(a) Ouro Preto historical buildings 1 (OPB1). (b) Ouro Preto historical buildings 2 (OPB2).

Fig. 8 The Ouro Preto historical urban scenes.

(a) Pelotas historical buildings 1 (PEB1). (b) Pelotas historical buildings 2 (PEB2).

Fig. 9 The Pelotas historical urban scenes.

(a) Binary image of OPB1. (b) Binary image of PEB1.

Fig. 10 Black/white representations of the urban scenes.
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Fig. 11 The local slopes of the built landscapes.

slopes are visibly different if we compare the char-
acteristics of two cities. These results suggest that
in the studied cases the Bovill hypothesis on rela-
tionship between the visual complexity of built and
natural settings is valid, at least qualitatively, with-
out specifying the quantitative level of agreement.

5. CONCLUSIONS

In this study we have analyzed the hypothesis on
the relationship between the visual complexity of
built and natural settings. The geometric complex-
ity was measured by the fractal dimension of build-
ings and environmental silhouettes. The important
issues of the application of the box-counting method
were discussed and some relevant properties were
illustrated in the evaluation of the fractal dimen-
sions of three classical fractals. The optimized algo-
rithm was employed for the analysis of the Amasya
case and it was shown that the results obtained
cannot be used to derive a sound conclusion on
the visual complexity of the three presented images
due to large standard deviations. In the case of two
Brazilian cities, Ouro Preto and Pelotas, the same
algorithm revealed a strong connection between the
features of the local slopes for the historical groups
of buildings and the surrounding natural environ-
ments. It was shown that the considered built and
natural scenes have a notable similarity in distri-
bution of fractal complexity with respect to spatial
scale. Since the standard deviations of the fractal
measures were sufficiently small, we can conclude
that the hypothesis on the relationship between the
visual complexity of built and natural landscapes is
confirmed for the considered Brazilian settings.
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